

Введение

Программа "Дали" предназначена для визуализации и анализа данных лидаров. Утилита позволяет классифицировать метео-объекты и аэрозоли, идентифицировать штормы и ураганы, определять зоны турбулентности и олединения, а также обнаруживать летательные аппараты.

Программа работает на Linux и Windows платформах. "Дали" написана с нуля и не содержит кода сторонних компаний.

Входными данными для программы являются параметры лидаров в HDF5, GRIB и netCDF форматах.

Программа "Дали" состоит из двух модулей:

Первый модуль предназначен для извлечения данных из файлов в форматах HDF5, GRIB и netCDF и задания цветовой палитры для их отображения.

Второй модуль служит для визуализации, классификации и идентификации метео-объектов, аэрозолей и летательных аппаратов. Модуль визуализации использует веб-браузер для отображения данных и может работать как в онлайн, так и офлайн режимах.

1. Модуль подготовки данных

Запустите программу "Дали" и нажмите кнопку **Ореп**.

	Lidar data viewer -	8
Open		

Затем, выберите файл в формате HDF5 (GRIB, netCDF), содержащий один или несколько параметров лидара.

После того, как файл выбран, появится новое окно – модуль подготовки данных. См. рис. 1.1.

	L	idar data viewer	- 0
Open ScanningCon	e.nc		
Data type: Data parame	ters 🔻 Parameter: ba	ackscatter coefficient (355_beta_kl	ett) [m-1 sr-1] 🔹
name: backscatter coeffici Min: -4.299E-02, Max: 4.13 Average: -2.715E-06, STD: num elements: 54000, num num masked: 0, num NaNs wavelength name: product	ent (355_beta_klett) [m-1 sr 2E-03 9.210E-07 n valid values: 54000 s: 0, num filled: 0 wavelength (wavelength), t	-1] unit: [nm], data size: [], value: 355	.0
Coloring type: Color range	Num. ranges 100 💌	From Blue 🔻	To Red 🔻
-4.299E-02	.299E-02 [m-1 sr-1]		4.132E-03
< -4.299E-02 color	Background color White	No data color Black	> 4.132E-03 color
Generate image			Close

Рис 1.1 Модуль подготовки данных.

В верхней части окна расположена секция данных (см. рис. 1.2). Данный блок содержит список имеющихся параметров и переменных и отображает данные, метеорологические и штормовые предупреждения а также системную информацию. В нижней части окна расположена секция цветового кодирования (см. рис. 1.8), которая содержит элементы для выбора цветового представления данных.

1.1 Секция данных

Секция данных расположена в верхней части окна (см. рис. 1.2) и содержит селектор для выбора типа данных **Data type**. Состав списка параметров (**Parameter**) зависит от выбранного в **Data type** элемента. В нижней части секции отображаются характеристики установленного в **Parameter** элемента данных.

Data type:	Data parameters	 Parameter: 	PM10 concentration (pm_retrieval) [ug m-3]	*
name: PM1 Min: 0.000, Average: 2 num eleme num maske	0 concentration (pm_r Max: 54.476 7.969, STD: 0.059 nts: 54000, num valid ed: 41667, num NaNs:	etrieval) [ug m-3] values: 11743 590, num filled: 0		

Рис. 1.2 Секция данных.

Селектор Data type содержит следующие разделы (см. рис. 1.3):

- 1) **Data parameters**. Данные лидаров, которые могут быть отображены в виде различного рода диаграмм. Например, концентрация частиц размером меньше 10 микрометров (PM10 concentration), коэффициент обратного рассеяния (backscatter coefficient) и т.д. (см. рис. 1.4) Полный список поддерживаемых параметров приведен в приложении 1. Под выбранным параметром отображается статистическая информация (см. рис. 1.2).
- 2) System variables. Вспомогательные переменные, используемые для подготовки диаграмм для визуализации данных (см. рис 1.5). Например: время сканирования, диапазон дальности и расстояние между импульсами, широта, долгота и возвышение лидара над уровнем моря, атмосферное давление и температура окружающей среды и т.д. Полный список поддерживаемых вспомогательных переменных приведен в приложении 2.
- 3) System info. Включает информацию о системе, времени сканирования а также географические координаты лидара и его высоту над уровнем моря (см. рис. 1.6).
- 4) Alerts. Содержит параметры метеорологических и штормовых предупреждений (см. рис. 1.7). Полный список параметров предупреждений приведен в приложении 3.

Data type:	Data parameters 🔹	Parameter:	PM10 concentration (pm_retrieval) [ug m-3]	•
	Data parameters			
name: PM10 Min: 0.000, 1	System variables	eval) [ug m-3]		
Average: 27 num elemen num masked	System info Alerts	ues: 11743), num filled: 0		

Рис. 1.3 Типы данных лидара.

Data type:	Data parameters 🔻	Parameter:	backscatter coefficient (355_beta_klett) [m-1 sr-1]
			backscatter coefficient (355_beta_klett) [m-1 sr-1]
name: back Min: -4.2998	scatter coefficient (355_ E-02, Max: 4.132E-03	beta_klett) [m-1	PM10 concentration (pm_retrieval) [ug m-3]
Average: -2.715E-06, STD: 9.210E-07 num elements: 54000, num valid values: 54000 num masked: 0, num NaNs: 0, num filled: 0 wavelength name: product wavelength (wavelength		7	backscatter coefficient (backscatter_retrieval) [m-1 sr-1]
		filled: 0	liquid_water_peaks data (liquid_water_peaks)
		gth (wavelength	liquid_water_peaks_distance data (liquid_water_peaks_distance)
			hard_targets data (hard_targets)
			backscatter retrieval - water filtered (backscatter_retrieval_filtered) [m-1 sr-1]
			PM2.5 concentration - water filtered (pm_retrieval_filtered) [ug m-3]

Рис. 1.4 Список данных лидара, доступных для для визуализации.

Data type:	System variables	 Parameter: 	time, unit: [seconds since 1970-01-01 00:00]
			time, unit: [seconds since 1970-01-01 00:00]
name: time Values:	, unit: [seconds since :	1970-01-01 00:00	time_bnds
[range, unit: [m]
168493619 168493621	2 (Wednesday, May 24 0 (Wednesday, May 24	4, 2023 09:49:52) 4, 2023 09:50:10)	nv
168493623	0 (Wednesday, May 24	4, 2023 09:50:30	system system_latitude (system_latitude), unit: [degrees_north]
168493625 168493626	0 (Wednesday, May 24 9 (Wednesday, May 24	4, 2023 09:50:50 4, 2023 09:51:09	system system_longitude (system_longitude), unit: [degrees_east]
168493628	9 (Wednesday, May 24	4, 2023 09:51:29	system altitude (system_altitude), unit: [m]
168493630 168493632	9 (Wednesday, May 24 9 (Wednesday, May 24	4, 2023 09:51:49 4, 2023 09:52:09	zenith angle of emitted laser (lidar_zenith_angle), unit: [degree]
168493634	8 (Wednesday, May 24	4, 2023 09:52:28	azimuth angle of emitted laser (lidar azimuth angle), unit: [degree]
168493636 168493638	8 (Wednesday, May 24 8 (Wednesday, May 24	4, 2023 09:52:48 4, 2023 09:53:08	air pressure at instrument level (air_pressure), unit: [hPa]

Рис. 1.5 Список дополнительных переменных и их значения.

Data type:	System info	•	Parameter:	System info	-
title: L2 pro system_nat site: BCIA Convention start_time: stop_time: system_lat system_lat	ocessed data me: BCIA ns: CF1.7 2023-05-24 13:49: 2023-05-24 14:13: itude: 35.034700 igitude: 136.88530	:46 19 0			

Рис. 1.6 Системная информация.

Data type:	Alerts 🔻	Parameter:	minimum longitude (longitude_min), unit: [degrees_east]	•
			minimum longitude (longitude_min), unit: [degrees_east]	^
value: 136.	mum longitude (longitude 871350	e_min), unit: [d	maximum longitude (longitude_max), unit: [degrees_east]	
			minimum latitude (latitude_min), unit: [degrees_north]	
			maximum latitude (latitude_max), unit: [degrees_north]	
			alert threshold (threshold)	
			Number of bins in region (region_bins)	
			Number of exceedances in region (exceedance_number)	
			Minimum number of points to activate alert (min_points)	
			mean time (alert_time), unit: [seconds since 1970-01-01 00:00]	

Рис. 1.7 Параметры метеорологических и штормовых предупреждений.

1.2 Секция цветового кодирования

Секция цветового кодирования расположена внизу окна и предназначена для задания соответствия между значениями данных и цветами палитры.

Секция состоит из следующих частей (см. рис. 1.8) - селектора способа цветового отображения (**Coloring type**) и цветовой палитры для диапазона данных, заданного минимальным и максимальным значениями. Данный раздел также содержит элементы для задания цвета фона, NaN значений и данных вне диапазона цветового кодирования.

Coloring type:			
Palette 🔻	Particles concentration		•
0	.000 [ug m-3]		
0.000			140.000
< 0.000 color	Background color	No data color	> 140.000 color
White -	White •	Black 🔻	Black

Рис. 1.8 Параметры секции цветового кодирования.

Система "Дали" поддерживает следующие типы цветового кодирования (см. рис. 1.9):

- 1) Заранее созданные палитры (**Palette**).
- 2) Палитры, задаваемые начальным и конечным цветом и числом элементов в ней (**Color range**)
- 3) Цветовой ряд, генерируемый алгоритмом sinebow (Sinebow)

Coloring type:			
Palette 🔻	Particles concentration		•
Palette	0.000 [ug m-3]		
Color range Sinebow			140.000
< 0.000 color	Background color	No data color	> 140.000 color
White •	White •	Black 🔻	Black 🔻

Рис. 1.9 Режимы цветового кодирования.

Рассмотрим эти режимы более подробно.

1.2.1 Предустановленные палитры (Palette)

Для отображения многих параметров лидаров имеются заранее оговоренные цветовые палитры. Например, концентрации частиц (PM10 concentration) соответствует стандартная палитра из 7 цветов **Particles concentration** для диапазона значений параметра от 0 до 140 мкг/м³, с шагом 20 мкг/м³ (см. рис. 1.8). Список стандартных цветовых палитр приведён в приложении 1. При выборе в селекторе **Parameter** данных, имеющих стандартную цветовую палитру, автоматически устанавливается режим **Palette** с соответствующей палитрой и диапазоном значений. Например, при выборе параметра **355_vldr** (коэффициент объёмной деполяризации частиц), цветовой режим устанавливается в **Palette** и выбирается палитра **Particles concentration** (см. рис. 1.9). Диапазон значений отображаемых величин составляет от 0.03 до 0.2.

Рис. 1.9 Предопределенная цветовая палитра для коэффициента объёмной деполяризации частиц.

Для цветового кодирования данных можно использовать любую доступную палитру, выбрав ее из списка, как показано на рис. 1.10. Слева и справа от цветовой палитры отображаются редактируемые минимальное и максимальное значения параметра. Эти величины определют диапазон данных, которые будут отображены в пределах выбранной цветовой гаммы. При перемещении курсора слайдера вдоль палитры цветов видно, какой цвет будет соответствовать определенному значению или диапазону значений параметра. Например, на рис. 1.11 выбрана цветовая палитра **Теmperature** для параметра **РМ 2.5 concentration** и установлено минимальное значение в 10, а максимальное в 40 мкг/м³. Данным, со значением в 10 мкг/м³ соответствует белый цвет, данным в 40 мкг/м³ – черный, а данным в 20 мкг/м³ – синий. Значения концентрации меньше 10 и больше 40 мкг/м³ показаны не будут, вернее, будут отображены полностью прозрачным цветом.

Рис. 1.10 Список имеющихся цветовых палитр.

Coloring type:			
Palette 🔻	Temperature		•
	20.000 [ug n	1-3]	
10.000			40
< 10.000 color	Background color	No data color	> 40 color
Transparent 🔻	White •	Black 🔻	Transparent 🔻

Рис. 1.11 Выбор палитры и установка интервала значений цветового кодирования.

Иногда данные вне установленного диапазона всё же необходимо отображать. Для этого устанавливаются цвета для значений меньше минимума и больше максимума. Селекторы цвета для выбора этих цветов находятся слева и справа от цветовой палитры, под значениями минимума и максимума соответственно. Например, на рис. 1.12 для значений меньше 20 мкг/м³ выбран серый цвет, а для значений, больше 30 мкг/м³ – фиолетовый.

Coloring type:			
Palette 🔻	Temperature		•
	14.333 [ug n	1-3]	
20.0			3.0
< 20.0 color	Background color	No data color	> 3.0 color
Gray 🔻	White •	Black 🔻	Purple 🔻

Рис. 1.12 Задание цветов для отображения данных вне выбранного интервала.

С помощью любого текстового редактора можно создавать новые палитры. Каждое значение цвета записывается в шестнадцатеричном представлении RGB, например: 0x00 0xff 0xff. Сохранив вновь созданную палитру в директории **palettes**, она станет доступна для использования наряду с уже имеющимися палитрами.

1.2.2 Генерируемые палитры (Color range)

При выборе в селекторе **Parameter** данных, не имеющих стандартную цветовую палитру, по умолчанию будет установлен режим **Color range**. Здесь цветовая палитра формируется автоматически от цвета, соответствующего минимальному значению параметра (**From**) до цвета, соответствующего максимальному значению (**To**). Количество цветов в палитре устанавливается селектором **Intervals**.

В примере, приведенном на рис. 1.13, выбран параметр - коэффициент обратного рассеивания (**backscatter coefficient**). Автоматически выбирается способ цветового кодирования **Color range**. Синий цвет соответствует нулевому значению коэффициента обратного рассеивания, а красный – значению 5.448Е-06 м⁻¹ср⁻¹. Цветовая палитра содержит 20 элементов. При перемещении курсора слайдера вдоль цветового ряда видно, какой цвет соответствует определенному значению или диапазону значений параметра.

Coloring type:			
Color range 🔹	Num. ranges 20 🔻	From Blue 🔻	To Red 🔻
		3.885E-06 [m-1 sr	-1]
0.000E+00			5.448E-06
	C	•	
< 0.000E+00 color	Background color	No data color	> 5.448E-06 color
Transparent	White 🔻	Black •	Transparent

Рис. 1.13 Цветовая палитра из 20 элементов от синего до красного для коэффициента обратного рассеивания.

Для отображения данных вне диапазона цветового кодирования, используют селекторы цвета, расположенные под значениями минимума и максимума. Например, на рис. 1.14 для значений коэффициента обратного рассеивания меньше 1.5Е-06 м⁻¹ср⁻¹ выбран белый цвет, а для значений, больше 4.5Е-06 м⁻¹ср⁻¹ – чёрный.

Coloring type:			
Color range 🔹 🔻	Num. ranges 20 💌	From Blue 🔻	To Red 🔻
		3.639E-06 [m-1 s	r-1]
1.5E-06			4.5E-06
		•	
< 1.5E-06 color	Background color	No data color	> 4.5E-06 color
White 🔻	White 🔻	Black 🔻	Black 🔻

Рис. 1.14 Выбор цветов для отображения данных вне заданного интервала.

1.2.3 Палитры, генерируемые алгоритмом sinebow (Sinebow)

Для цветового кодирования данных хорошо зарекомендовал себя алгоритм **Sinebow**, генерирующий гладкую цветовую палитру. В данном режиме достаточно только указать число интервалов и цветовая палитра будет сформирована автоматически.

В качестве примера выберем параметр - коэффициент деполяризации частиц (**particle linear depolarization ratio**) и установим режим **Sinebow**, задав число цветов в палитре (см. рис. 1.15). При перемещении курсора слайдера вдоль палитры цветов видно, какой цвет соответствует определенному значению или диапазону значений параметра.

Рис. 1.15 Цветовая палитра из 10 элементов, сгенерированная алгоритмом Sinebow.

Для отображения данных вне диапазона цветового кодирования, используют селекторы цвета, расположенные под значениями минимума и максимума. Например, на рис. 1.16 для значений коэффициента деполяризации частиц меньше 0.5 выбран жёлтый цвет, а для значений, больше 0.99 – чёрный.

Coloring type:			
Sinebow 🔻	Num. ranges 10 🔹		
		0.849	
0.5			0.99
	C	•	
< 0.5 color	Background color	No data color	> 0.99 color
Yellow 🔻	White •	Black 🔻	Black 🔻

Рис. 1.16 Задание цветов для отображения данных вне выбранного интервала.

Иногда данные лидаров содержат значения, которые не являются достоверными. Такие данные кодируются либо как **NaN** (нечисловое значение) либо специальным числом (**filled value**). Для отображения таких значений устанавливают цвет с помощью селектора цвета **No data color**.

Для задания цвета фона используется элемент **Background color**.

При нажатии на кнопку **Generate image** (см. рис. 1.1) выбранные данные отображаются модулем визуализации в соответствии с установленной палитрой.

2. Модуль визуализации

Модуль визуализации предназначен для отображения, классификации и идентификации метеообъектов, аэрозолей и летательных аппаратов. Для отображения данных используется веб-браузер, который может работать как в онлайн, так и офлайн режимах.

В зависимости от типа данных, возможны следующие способы визуализации:

- Конусная развертка. Этот режим используется, когда исходные данные получены при сканировании по углу азимута при фиксированном угле зенита. Развертка лидара проецируется на плоскость в виде сектора или круга от максимального до минимального значения угла азимута (см. рис. 2.3 и 2.6).
- Вертикальная кросс-секция. В этом режиме развертка лидара формируется по углу зенита (возвышения) при фиксированном угле азимута. Диаграмма строится в виде сектора круга от максимального до минимального значения угла зенита (см. рис. 2.7).
- 3) Временная диаграмма. Этот режим используется, когда исходные данные получены при фиксированном угле зенита, близком к вертикальному (0°). Угол азимута также фиксирован, а сами данные представляют собой последовательность значений отраженного сигнала для различных интервалов времени (см. рис. 2.10).
- 4) Классификация аэрозолей. Представляет собой временную диаграмму, данные в которой сгруппированы по типу аэрозолей для разных высот (см. рис. 2.13).

Все приведенные выше способы визуализации содержат следуюшие элементы:

- Диаграмму для отображения данных
- Цветовую палитру
- Фильтр для задания интервала отображаемых данных
- Область вывода информации, содержание которой динамически определяется положением курсора мыши на диаграмме
- Сетку географических координат, углов азимута и зенита
- Зона, содержащая координаты лидара и название отображаемого параметра

Рассмотрим режимы отображения данных более подробно.

2.1 Конусная развертка

Данные конусной развертки получают сканированием по углу азимута при фиксированном угле зенита лидара. В качестве иллюстрации, в секции данных выберем пункт **System variables** для **Data type** (см. рис. 1.5). Затем установим значение **zenith angle of emitted laser** (угол зенита) в селекторе **Parameter**. Из рис. 2.1 видно, что для выбранных данных, угол зенита (возвышения) не изменяется и составляет 87.9° (90° – 87.9° = 2.1°) для всех 79 наблюдений.

		Lidar data viewer – 🙁
Open ScanningCone	FromTo1.nc	
Data type: System variable	les 🔻 Parameter:	zenith angle of emitted laser (lidar_zenith_angle), unit: [degree]
name: zenith angle of emitte Values: [87.9 87.9 87.9 87.9 87.9 87.9 87. 87.9 87.9 87.9 87.9 87.9 87.	ed laser (lidar_zenith_ar 9 87.9 87.9 87.9 87.9 9 87.9 87.9 87.9	ngle), standard name: sensor_zenith_angle, unit: [degree], data size: [79]

Рис. 2.1 Значения углов зенита.

Выбрав параметр **azimuth angle of emitted laser** (угол азимута) находим, что угол азимута содержит 79 значений, которые изменяются от 202.8° до 37.8° с шагом 2.5° (см. рис. 2.2).

					Lida	r data view	er					- 😣
Open .	Scar	nningCone	FromTol	.nc								
Data typ	Syst	em variab	les 🔻	Parameter	azim	uth angle o	f emitted	laser (lida	r_azimuth	_angle),	unit: [deg	ır ▼
name: Values	azimuth an :	igle of emi	itted lase	r (lidar_azim	uth_angl	e), standar	d name: s	ensor_azir	nuth_angl	e, unit: [degree], (data size:
202.8	205.3	207.8	210.3	212.8	215.3	217.8	220.3	222.8	225.3			
227.8	230.3	232.8	235.3	237.8	240.3	242.8	245.3	247.8	250.3			
252.8	255.3	257.8	260.3	262.8	265.3	267.8	270.3	272.8	275.3			
277.8	280.3	282.8	285.3	287.8	290.3	292.8	295.3	297.8	300.3			
302.8	305.3	307.8	310.3	312.8	315.3	317.8	320.3	322.8	325.3			
327.8	330.3	332.8	335.3	337.8	340.3	342.8	345.3	347.8	350.3			
352.8	355.3	357.8	0.3	2.8	5.3	7.8	10.3	12.8	15.3			
17.8]	20.3	22.8	25.3	27.8	30.3	32.8	35.3	37.8				

Рис. 2.2 Значения углов азимута.

Развертка лидара для выбранного параметра проецируется на плоскость в виде сектора круга от 202.8° до 37.8° угла азимута (см. рис. 2.3).

Диаграмма, приведенная на рис. 2.3 содержит:

- 1) Зону отображения данных, занимающую большую часть экрана. Здесь также расположена сетка географических координат с метками по широте и долготе. Полярные координаты заданы с шагом в 1 км по расстоянию и 10° по углу азимута.
- 2) Фильтр данных, расположенный вверху экрана и позволяющий отображать выбранный диапазон значений параметра. Например, на рис. 2.4 показаны только значения коэффициента обратного рассеивания, лежащие в пределах от 3.5Е-6 до 1.0Е-5 м⁻¹ср⁻¹.
- 3) Цветовую палитру, расположенную в левой части экрана. Палитра идентична установленной в секции цветового кодирования (см. раздел 1.2). В соответствии с ней осуществляется цветовое представление (раскраска) значений параметра. При выделении курсором мыши элемента цветовой палитры, на диаграмме подсвечиваются данные соответствующего диапазона. Например, на рис. 2.5 белым цветом выделены все значения коэффициента обратного рассеивания, имеющие значения от 5.0Е-7 до 1.0Е-6 м⁻¹ср⁻¹.
- 4) Информацию о системе и выбранном параметре, расположенную в левом нижнем углу экрана.

Рис. 2.3 Представление данных лидара в виде проекции конуса сканирования на плоскость.

Рис. 2.4 Фильтрация данных коэффициента обратного рассеивания.

Рис. 2.5 Выделение данных в соответствии с выбранным диапазоном цветовой палитры.

При перемещении курсора мыши по диаграмме, слева и снизу экрана отображаются географические координаты, соответствующие позиции мыши. Вверху экрана, под фильтром данных выводится следующая информация (см. рис. 2.3):

- значение выбранного параметра в точке (2.016Е-6 м⁻¹ср⁻¹)
- расстояние от лидара до данной точки как с учетом, так и без учета возвышения (3477.6 / 3480.2 м)
- географические координаты и высота над уровнем моря (38.06468°, 23.74818°), 282.5 м
- углы возвышения и азимута (2.1° и 290.3° соответственно)

На рис. 2.6 приведена диаграмма развертки коэффициента обратного рассеивания лидара при сканировании по углу азимута от 0 до 360°.

Рис. 2.6 Диаграмма развертки лидара при сканировании по углу азимута от 0 до 360°.

2.2 Вертикальная кросс-секция

В этом режиме развертка лидара формируется по углу зенита при фиксированном угле азимута. Диаграмма строится в виде сектора круга от максимального до минимального значения угла зенита (см. рис. 2.7). В примере, приведенном ниже, угол зенита меняется от 90° до 0° с шагом 10°. Угол азимута постоянен и составляет 200°.

Диаграмма, приведенная на рис. 2.7 содержит:

- 1) Зону отображения данных, занимающую большую часть экрана. Здесь также расположена сетка координат с метками по высоте и расстоянию от лидара с шагом 1000 м. Сетка полярных координат имеет шаг в 10° по углу возвышения.
- 2) Фильтр данных, расположенный вверху экрана и позволяющий отображать выбранный диапазон значений параметра. Например, на рис. 2.8 показаны только значения коэффициента объёмной деполяризации частиц, лежащие в пределах от 0.025 до 0.3.
- 3) Цветовую палитру, расположенную в левой части экрана. Палитра идентична установленной в секции цветового кодирования (см. раздел 1.2). В соответствии с ней осуществляется цветовое представление (раскраска) значений параметра. При выделении курсором мыши элемента цветовой палитры, на диаграмме подсвечиваются данные соответствующего диапазона. Например, на рис. 2.9 выделены белым цветом все значения коэффициента объёмной деполяризации частиц, имеющие величины от 0.007 до 0.043.
- 4) Информацию о системе и выбранном параметре, расположенную в левом нижнем углу экрана.

При перемещении курсора мыши по диаграмме, появляются вертикальная и горизонтальная пунктирные линии, пересекающиеся в месте курсора. На пересечении пунктирных линий отображаются значение выбранного параметра (0.016) и величина угла возвышения (57.7°). Справа от диаграммы выводится высота над уровнем моря (2069 м), а внизу - расстояние от лидара (1308 м), соответствующие позиции курсора на экране.

Рис. 2.7 Вертикальная кросс-секция.

Рис. 2.8 Фильтрация коэффициента объёмной деполяризации частиц.

Рис. 2.9 Выделение данных в соответствии с выбранным диапазоном цветовой палитры.

2.3 Временная диаграмма

Данные для построения временных диаграмм получают при фиксированном угле зенита, близкого к вертикали (0°) для последовательных интервалов времени. Угол азимута также фиксирован, а сами данные представляют собой значения отраженного сигнала для различных промежутков времени наблюдения (см. рис. 2.10).

В примере, приведенном ниже, угол зенита равен 2°, а азимут - 0°. Период наблюдения состоит из 60 интервалов по одной минуте.

Диаграмма, приведенная на рис. 2.10 содержит:

- Зону отображения данных, занимающую большую часть экрана. По оси ординат отложена высота с метками через каждые 1000 м. По оси абцисс - время наблюдения с отметками через каждые 5 минут.
- Фильтр данных, расположенный вверху экрана и позволяющий отображать выбранный диапазон значений параметра. Например, на рис. 2.10 показаны только значения коэффициента объёмной деполяризации частиц, лежащие в пределах от 0.01 до 0.07.
- 3) Цветовую палитру, расположенную в левой части экрана и идентичной цветовой схеме, выбранной в секции цветового кодирования (см. раздел 1.2). В соответствии с палитрой осуществляется цветовое представление (раскраска) значений параметра. При выделении курсором мыши элемента цветовой палитры, на диаграмме подсвечиваются данные соответствующего диапазона.

Например, на рис. 2.11 выделены все значения коэффициента объёмной деполяризации частиц, имеющие величины от 0.007 до 0.043.

4) Информацию о системе и выбранном параметре, расположенную в левом нижнем углу экрана.

При движении курсора мыши по диаграмме, справа и вверху экрана появятся две гистограммы. Верхняя отображает распределение значений исследуемого параметра на фиксированной высоте для всех интервалов времени, а гистограмма справа показывает, как изменяются данные по высоте при фиксированном времени наблюдения (см. рис. 2.12).

При перемещении курсора мыши по диаграмме, появляются вертикальная и горизонтальная пунктирные линии, пересекающиеся в месте курсора. На пересечении пунктирных линий отображается значение параметра (0.029), справа от диаграммы - высота над уровнем моря (832 м), внизу – время наблюдения (2 мая 2023, 20:21:28), соответствующие позиции курсора на экране (см. рис. 2.12).

0.070

L3b processed data at SaudiA (24.5532, 46.4318), altitude: 160 m. parameter: 355 vldr data

0.000

Рис. 2.11 Селекция данных в соответствии с выбранным диапазоном цветовой палитры.

Рис. 2.12 Гистограмма вверху экрана отображает распределение параметра по времени на фиксированной высоте. Гистограмма справа - показывает распределение данных по высоте для выбранного времени наблюдения.

2.4 Классификация аэрозолей

Этот режим является разновидностью временной диаграммы, когда исходные данные сгруппированы по типу аэрозолей для разных высот.

В настоящее время аэрозоли и загрязнения воздуха группируются по следующим типам:

- Unclassified. Неклассифицированные загрязнения воздуха
- Urban/dust/marine. Городские загрязнения, пыль и морские туманы
- Mixed aerosol (smoke, dust, urban). Смесь аэрозолей дым, пыль и городской смог
- **Dust**. Пыль
- Unclassified aerosol. Неклассифицированные аэрозоли
- Cloud. Облака
- Ice cloud. Ледяные облака
- Unclassified cloud. Неклассифицированные облака

Данные для построения временных диаграмм получают при фиксированном угле зенита, близкого к вертикали (0°) для последовательных интервалов времени. Угол азимута фиксирован. Категории аэрозолей сгруппированны по высоте для различных интервалов времени (см. рис. 2.13).

В примере, приведенном ниже, угол зенита равен 2°, а азимут - 0°. Период наблюдения составляет один час и состоит из 60 интервалов по одной минуте.

Диаграмма, приведенная на рис. 2.13 содержит:

- Зону отображения данных, занимающую большую часть экрана. По оси ординат отложена высота с метками через каждые 250 м. По оси абцисс - время наблюдения с отметками через каждые 5 минут.
- 2) Цветовую палитру, расположенную в левой части экрана и идентичной цветовой схеме, выбранной в секции цветового кодирования (см. раздел 1.2). В соответствии с палитрой осуществляется цветовое представление (раскраска) аэрозолей. При выделении курсором мыши элемента цветовой палитры, на диаграмме будет подсвечен выбранный тип аэрозоля. Например, на рис. 2.14 зелёным цветом выделены все аэрозоли, содержащие пыль.
- 3) Информацию о расположении лидара и выбранном параметре, которая находится в левом нижнем углу экрана.

При перемещении курсора мыши по диаграмме, появляются вертикальная и горизонтальная пунктирные линии, пересекающиеся в месте курсора. На пересечении пунктирных линий отображается тип аэрозоля (Mixed aerosol (smoke, dust, urban)), справа от диаграммы - высота над уровнем моря (2618 м), внизу – время наблюдения (2 мая 2023, 20:37:53), соответствующие позиции курсора на экране (см. рис. 2.15).

Рис. 2.13 Распределение аэрозолей по высоте и времени.

Рис. 2.14 Выделение зелёным цветом аэрозолей, содержащих пыль (**Dust**).

Рис. 2.15 Отображение информации об аэрозоле в выбранной точке.

Приложение 1. Список поддерживаемых параметров

Имя параметра и аббревиатура	Диапазон значений и единица измерения	Стандартная палитра
Коэффициент обратного рассеивания (метод Клетта) (355_beta_klett)	м ⁻¹ ср ⁻¹	Отсутствует
Коэффициент обратного рассеивания (backscatter_retrieval)	M ⁻¹ Cp ⁻¹	Отсутствует
Коэффициент обратного рассеивания с фильтрацией водяных паров backscatter retrieval - water filtered (backscatter_retrieval_filtered)	м ⁻¹ ср ⁻¹	Отсутствует
(liquid_water_peaks)	м ⁻¹ ср ⁻¹	Отсутствует
(liquid_water_peaks_distance)	м ⁻¹ ср ⁻¹	Отсутствует
Отражение от твердотельных объектов (hard_targets)		Отсутствует
Концентрация частиц с диаметром меньше 10 мкм PM10 concentration (pm_retrieval)	[0, 140] мкг/м ³	Particles concentration
Концентрация частиц с диаметром меньше 2.5 мкм PM2.5 concentration - water filtered (pm_retrieval_filtered)	[0, 140] мкг/м ³	Particles concentration
Интерполяция концентрации частиц с диаметром меньше 2.5 мкм interpolation of pm filtered (interpolation_of_pm_filtered)	[0, 140] мкг/м ³	Particles concentration
Коэффициент деполяризации частиц particle linear depolarization ratio (355_pldr)	[0.1, 1.0]	Depolarization ratio
Коэффициент объёмной деполяризации частиц volume linear depolarization ratio (355_vldr)	[0.03, 0.2]	Depolarization ratio

Имя параметра	Описание	Единица измерения	
air_temperature	Температура окружающей среды	°K / °C	
air_pressure	Атмосферное давление	гПа	
azimuth_angle	Угол азимута	0	
zenith_angle	Угол зенита	0	
range	Диапазон	м	
time	Время измерения	Число секунд с 1 января 1970 года	
time_bnds	Интервал измерения	Число секунд с 1 января 1970 года	

Приложение 2. Список вспомогательных переменных

Приложение 3. Параметры метеорологических и штормовых предупреждений

Имя параметра	Описание
region	Имя региона, для которого объявлено предупреждение
region_id	Идентификационный номер региона, для которого объявлено предупреждение
longitude_min	Минимальная долгота региона, для которого активировано предупреждение
longitude_max	Максимальная долгота региона, для которого объявлено предупреждение
latitude_min	Минимальная широта региона, для которого активировано предупреждение
latitude_max	Максимальная широта региона, для которого объявлено предупреждение
threshold	Пороговый уровень для активизации штормового предупреждения
region_bins	Число штормовых ячеек в регионе
exceedance_number	Число превышений порогового уровня в регионе
min_points	Минимальное количество штормовых ячеек, необходимое для активизации штормового предупреждения
alert_time	Время объявления метеорологического или штормового предупреждения
alert_time_bnds	Временной интервал, для которого объявлено предупреждение